Riccati-parameter solutions of nonlinear second-order ODEs
نویسنده
چکیده
It has been proven by Rosu and Cornejo-Pérez [1, 2] that for some nonlinear second-order ODEs it is a very simple task to find one particular solution once the nonlinear equation is factorized with the use of two first-order differential operators. Here, it is shown that an interesting class of parametric solutions are easy to obtain if the proposed factorization has a particular form, which happily turns out to be the case in many problems of physical interest. The method that we exemplify with a few explicitly solved cases consists in using the general solution of the Riccati equation, which contributes with one parameter to this class of parametric solutions. For these nonlinear cases, the Riccati parameter serves as a ‘growth’ parameter from the trivial null solution up to the particular solution found through the factorization procedure.
منابع مشابه
Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملConstruction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations)
We provide a new mathematical technique leading to the construction of the exact parametric or closed form solutions of the classes of Abel’s nonlinear differential equations ODEs of the first kind. These solutions are given implicitly in terms of Bessel functions of the first and the second kind Neumann functions , as well as of the free member of the considered ODE; the parameter ν being intr...
متن کاملnew analytical method based on Riccati equation for finding Soliton solutions of Nonlinear Lakshmanan-Porsezian-Daniel (LPD) equation
In this present study analytical method based on Riccati Equation as for converting the Nonlinear Lakshmanan-Porsezian-Daniel (LPD) equation into the nonlinear ODE and finding soliton solutions of this sustem discused. Obtaining solutions are new and obtained from wave transformation. The obtained results show that the presented method is effective and appropriate for solving nonlinear differen...
متن کاملNonlocal symmetries of a class of scalar and coupled nonlinear ordinary differential equations of any order
In this paper we devise a systematic procedure to obtain nonlocal symmetries of a class of scalar nonlinear ordinary differential equations (ODEs) of arbitrary order related to linear ODEs through nonlocal relations. The procedure makes use of the Lie point symmetries of the linear ODEs and the nonlocal connection to deduce the nonlocal symmetries of the corresponding nonlinear ODEs. Using thes...
متن کاملODE trends in computer algebra: Four linear and nonlinear challenges
This paper discusses possible solving strategies regarding four ODE problems, all relevant and currently out of the scope of the Maple ODE solver. The problems are: 1. Transformations linearizing non-linear first order ODEs 2. Non-linear 2nd order ODEs for which point symmetries are of no use 3. Hypergeometric solutions for 2nd order linear ODEs 4. Solutions for third and higher order linear OD...
متن کامل